Package: FunSurv (via r-universe)

March 18, 2025

·
Title Modeling Time-to-Event Data with Functional Predictors
Version 1.0.0
Description A collection of methods for modeling time-to-event data using both functional and scalar predictors. It implements functional data analysis techniques for estimation and inference, allowing researchers to assess the impact of functional covariates on survival outcomes, including time-to-single event and recurrent event outcomes.
Depends R (>= $3.5.0$)
License MIT + file LICENSE
<pre>URL https://github.com/zifangkong/FunSurv</pre>
<pre>BugReports https://github.com/zifangkong/FunSurv/issues</pre>
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Imports MFPCA, MASS, funData, Matrix, ggplot2, methods, reda (>= 0.5.0)
Config/pak/sysreqs libfftw3-dev
Repository https://zifangkong.r-universe.dev
RemoteUrl https://github.com/zifangkong/funsurv
RemoteRef HEAD
RemoteSha 303a3caca793da8d2eccd8d96f1c359970872342
Contents
ar1_cor AR1_FRAILTY basesurv dar1_cor.drho plot.funsurv simDat

2 AR1_FRAILTY

ar1_cor

Construct an AR(1) correlation matrix

Description

Construct an AR(1) correlation matrix

Usage

```
ar1_cor(n, rho)
```

Arguments

n number of events for each subject

rho autoregressive correlation

Value

A n by n matrix

Examples

```
## Generate AR(1) structure
ar1_cor(n = 5, rho = 0.3)
## first derivative of the AR(1) structure with respect to rho
dar1_cor.drho(n = 5, rho = 0.3)
```

AR1_FRAILTY

Fit a Functional Regression with AutoregressIve fraiLTY (FRAILTY) model for Recurrent Event Data

Description

Jointly model longitudinal measurements and recurrent events, accommodating both scalar and functional predictors while capturing time-dependent correlations among events. The FRAILTY method employs a two-step estimation procedure. First, functional principal component analysis through conditional expectation (PACE) is applied to extract key temporal features from sparse, irregular longitudinal data. Second, the obtained scores are incorporated into a dynamic recurrent frailty model with an autoregressive structure to account for within-subject correlations across recurrent events. This function works only for univariate functional data.

AR1_FRAILTY 3

Usage

```
AR1_FRAILTY(
    formula,
    sdat,
    fdat,
    para0 = c(0.5, 0.5),
    nbasis = 10,
    pve = 0.9,
    npc = NULL,
    makePD = FALSE,
    cov.weight.type = c("none", "counts"),
    iter.max = 50,
    eps = 1e-06
)
```

Arguments

fdat

nbasis

pve

npc

formula	A formula, with the response on the left of a ~ operator being a Recur object as				
	returned by function Recur in reda , and scalar covariates on the right.				
sdat	A data frame containing subject IDs, time-to-event outcomes (starting time, end				
	point censoring time and event status), and scatar covariates				

point, censoring time and event status), and scalar covariates

A data frame containing subject IDs, longitudinal measurements, and the corresponding time points for each measurement.

para0 A vector of initial values for θ^2 and auto-regressive coefficient ρ . Both default to 0.5.

An integer, representing the number of B-spline basis functions used for estimation of the mean function and bivariate smoothing of the covariance surface. Defaults to 10 (cf. fpca.sc in **refund**).

A numeric value between 0 and 1, the proportion of variance explained: used to choose the number of principal components. Defaults to 0.9 (cf. fpca.sc in **refund**).

An integer, giving a prespecified value for the number of principal components. Defaults to NULL. If given, this overrides pve (cf. fpca.sc in **refund**).

makePD Logical: should positive definiteness be enforced for the covariance surface estimate? Defaults to FALSE (cf. fpca.sc in **refund**).

cov.weight.type

The type of weighting used for the smooth covariance estimate. Defaults to "none", i.e. no weighting. Alternatively, "counts" (corresponds to fpca.sc in **refund**) weights the pointwise estimates of the covariance function by the number of observation points.

Maximum number of iterations for both inner iteration and outer iteration. Defaults to 50.

Tolerance criteria for a possible infinite coefficient value. Defaults to 1e-6.

iter.max

eps

4 AR1_FRAILTY

Details

Model specification:

Let T_{ij} denote the time of the jth event for subject i, and let C_i represent the censoring time. The observed event time, accounting for right censoring, is $\widetilde{T}_{ij} = \min(T_{ij}, C_i)$, and $\delta_{ij} = I(T_{ij} \leq C_i)$ serves as an indicator of whether the jth event for subject i is observed. The hazard function is specified as

$$h(t; \boldsymbol{Z}_i, X_i(\cdot)) = h_0(t - t_{i,j-1}) \exp(\eta_{ij}),$$

where $h_0(\cdot)$ is the baseline hazard function, and $\eta_{ij} = \boldsymbol{\alpha}^\top \boldsymbol{Z}_i + \int_{t_{i,j-1}}^t X_i(s)\beta(s)ds + v_{ij}$. Here, $t_{i,j-1}$ is the previous event time with $t_{i0} = 0$. $\boldsymbol{\alpha}$ is the fixed effect parameter associated with the time-invariant covariates \boldsymbol{Z}_i , and $\beta(t)$ is a time-varying coefficient that captures the effect of functional predictor $X_i(t)$ on the hazard rate of recurrent events.

Value

A funsury object containing the following components:

beta	Estimation of	of coefficient	s of scalar	covariates and	FPC scores.	Including esti-
Deta	Lammanon	or cocmicicin	s or scarar	covariates and	TIC SCOICS.	including con-

mated values, standard errors, and p-values

beta_vcov Estimated variance-covariance of the estimates of beta

eAR Estimation of variance components (θ^2 and ρ)
eAR_vcov Estimated variance of estimates of θ^2 and ρ frailties Estimated frailty terms (random effects)
basesurv Estimated baseline survival probability

time Time points associated with baseline survival probability

FPC Functional principal components

See Also

Recur

PACE

Examples

basesurv 5

basesurv

A function to obtain the baseline survival function

Description

A function to obtain the baseline survival function

Usage

```
basesurv(object)
```

Arguments

object

A funsury object

Value

A data frame including time and baseline survival

Examples

dar1_cor.drho

First derivative of AR(1) correlation matrix with respect to the autoregressive coefficient

Description

First derivative of AR(1) correlation matrix with respect to the auto-regressive coefficient

Usage

```
dar1_cor.drho(n, rho)
```

Arguments

n number of events for each subject rho autoregressive correlation

Value

A n by n inverse matrix

6 simDat

plot.funsurv

Plot method for 'funsury' objects

Description

Plot method for 'funsurv' objects

Usage

```
## S3 method for class 'funsurv'
plot(x, what = c("beta", "fpc", "basesurv"), ...)
```

Arguments

X

A funsury object

what

A character string specifying what to be plotted. Use what = "beta" to plot the estimated $\beta(t)$. Use what = "fpc" to plot the functional principal components associated with the the longitudinal measurements. Use what = "basesurv" to plot the baseline survival probabilities.

additional graphical parameters to be passed to methods.

Value

A ggplot object ...

Examples

simDat

Simulated datasets for demonstration

Description

The dataset was generated based on the proposed model $h(t; \mathbf{Z}_i, X_i(\cdot)) = h_0(t - t_{i,j-1}) \exp{(\eta_{ij})}$, where $h_0(\cdot)$ is the baseline hazard function generated from a Weibull distribution. $\eta_{ij} = \boldsymbol{\alpha}^{\top} \mathbf{Z}_i + \int_{t_{i,j-1}}^t X_i(s)\beta(s)ds + v_{ij}$. $\boldsymbol{\alpha}$ is the fixed effect parameter associated with the time-invariant covariates \mathbf{Z}_i , and $\beta(t)$ is a time-varying coefficient that captures the effect of functional predictor $X_i(t)$ on the hazard rate of recurrent events. The simulated dataset is organized into two data frames: a survival data frame (sdat) and a functional data frame (fdat). The variables in each data frame are listed below:

simDat 7

Usage

data(simDat)

Format

A list with two data frame:

sdat Survival data; a data frame with xxx rows and xxx variables:

id Subjects identification

event A sequence of the number of events per subject

t_start Event starting time

t_end Event end time

censoring_time Event censoring time

status Event status: status=1 if event is observed and status=0 if event is censored

z1 A univariate scalar covariates. Can be extended to multiple scalar covariates

fdat Functional data; a data frame with xxx rows and xxx variables:

id Subjects identification

time Time points for each longitudinal measurement

x Longitudinal measurements at distinct time points

Source

Simulated data